
Software programming Guide V1.2 www.egalax.com.tw 0

TouchKit
Software Programming Guide

Version 1.2

Software programming Guide V1.2 www.egalax.com.tw 1

Contents

Chapter 1 Introduction

Chapter 2 Programming Guide of Using TouchKit Controller Board

1.1 Protocol

1.1.1Diagnostics Packet

1.1.2Report Packet

1.2 Interface

1.2.1 RS232 Interface

1.2.2 PS/2 Interface

1.2.3 USB Interface

1.2.4 IIC Interface

1.3 Packet Parser Sample Code

1.4 2 Points Calibration for Position Decoding

Software programming Guide V1.2 www.egalax.com.tw 2

Chapter 1. Introduction

eGalax provides a full range of controllers designed to optimize the performance of
analog resistive touch panels. The controller communicates with the PC system
directly through RS232, PS/2, USB port and even I2C. In recent years, portable
devices become popular, and I2C transaction is the best way to communicate with
these portable devices, like PDA, eBook, Mira, etc.

eGalax superior design combines accuracy, sensitivity and speed to reach the
outstanding touch performance and ease of use. The drivers emulate the mouse input
and right button function, and support a variety of operation systems, including DOS,
Windows 98, Windows NT4, Windows 2000, Windows Me, Windows XP, Windows
CE.net, iMac, Linux RedHat and Mandrake Linux.

However some special designs, our honor customers have to develop their own
programs communicating with the touch panel controller firmware directly. The data
command packet structure will be described in chapter 1. Then special notices of
programming RS232, PS/2, USB port and I2C tare expressed. At the end, the sample
code of parsing the packet from controller and the two points calibration / alignment
conversion formulas are listed.

And some OEM customers need to use their own logos and brand names instead of
that of eGalax. Therefore chapter 2 of this application note is designed to fit our honor
customers’ needs on Windows OS.

Software programming Guide V1.2 www.egalax.com.tw 3

Chapter 2 Programming Guide of Using TouchKit Controller Board

.

1.1 Packets Format

All TouchKit controllers including RS232, PS2 and USB for 4-wire, 5-wire and 8-wire

use the same packet format. And the packets can be classified into 2 groups:

Diagnostics Packet and Report Packet.

1.1.1 Diagnostics Packet

These packets are issued from the host for querying some device information.
The controller firmware will report the corresponding data to the host. The packet
format is as follows:

0x0A LengthInByte Command Response
1 Byte 1 Byte 1 Byte (LengthInByte-1) Bytes

The maximum packet size is 16 bytes. The first byte is Start of Packet as 0x0A.
The second byte is the length of Response. The third byte is the issued command
and the last part (length is defined in second byte) is the response from controller
firmware.

1. Check active : this packet is to check if the device is working properly.
Host issues
0x0A 1 ‘A’
Device responds when active
0x0A 1 ‘A’

2. Get firmware version
Host issues
0x0A 1 ‘D’
Controller firmware responds
0x0A Length ‘D’ Response
The response is an ASCII string, such as ‘0.99’

Software programming Guide V1.2 www.egalax.com.tw 4

3. Get type
This packet is to request the controller type. The possible responses are ‘4
wire’ or ‘5 wire’.
Host issues
0x0A 1 ‘E’
Controller firmware responds
0x0A Length ‘E’ Response

1.1.2 Report Packet

Each report packet contains 5 bytes. The packet format is as follows:

 MSB LSB
1 0 0 0 0 0 0 Status
0 0 0 0 A10 A9 A8 A7
0 A6 A5 A4 A3 A2 A1 A0
0 0 0 0 B10 B9 B8 B7
0 B6 B5 B4 B3 B2 B1 B0

Status: indicates the touch status: 1 for touch down and 0 for touch up.
A10 – A0: 11 bits of 1st direction raw data
B10 – B0: 11 bits of 2nd direction raw data

 Please be aware that A and B just represent 2 resolution directions of the touch

panel.

Byte1

Byte2

Byte3

Byte4

Byte5

Software programming Guide V1.2 www.egalax.com.tw 5

1.2 Communication Interface

1.2.1 RS232 Interface
If RS232 controller is used, please specify the following information in the driver

programs:

● Baud rate: 9600 bps
● Data bits: 8 bit
● Stop bit: 1 bit
● Parity check: NONE

1.2.2 PS/2 Mouse Interface
If PS/2 mouse interface controller is used, please follow PS/2 mouse specification for

standard PS/2 mouse command sets for BIOS plug and play. Then, follow Touchkit

controller packet format to communicate with controller for touch screen features.

1.2.3 USB Interface
If USB controller is used, please notice that the board firmware is designed with

standard “Vendor Request Command.”

● USB firmware VID and PID may be one of
◆ 1.) VID = 0123, PID=0001
◆ 2.) VID = 0EEF, PID=0001
◆ 3.) VID = 0EEF, PID=0002

● Maximum FIFO size is 8 bytes
● Two end points are used:

◆ Control pipe: for standard USB PnP and writing packets to controller
device controller.

◆ Interrupt pipe: for reading packet from controller device.
● It needs to wait for 3ms at least to issue another write command after one write

command is issued
● The polling interval of reading with interrupt pipe is 5 ms
● Control Write Urb format is as follows

Software programming Guide V1.2 www.egalax.com.tw 6

/*===*/

/* Vendor specific request Urb format for Touch Panel controller kit */

/* with Win2000 DDK */

/*===*/

UsbBuildVendorRequest(pWriteUrb, //IN PURB Urb,

 URB_FUNCTION_VENDOR_DEVICE , //IN USHORT Function,

 sizeof(struct _URB_CONTROL_VENDOR_OR_CLASS_REQUEST), //IN USHORT Length,

 0, //IN ULONG TransferFlags,

 0, //IN UCHAR ReservedBits,

 0, //IN UCHAR Request,

 0, //IN USHORT Value,

 0, //IN USHORT Index,

 pTxBuffer, //IN PVOID TransferBuffer OPTIONAL,

 NULL, //IN PMDL TransferBufferMDL OPTIONAL,

 ulBytesToSend, //IN ULONG TransferBufferLength,

 NULL //IN PURB Link OPTIONAL,

);

1.2.4 I2C Interface

● Baud rate: less than 12.5 kbps
● I2C transaction package: (Packet) = Bytes of transfer + Payload

Where the payload is packet for touch screen feature.
● Default address: 04
● Software needs to reassemble the payload as the TouchKit packet.

Example: Bytes of transaction = N

Tx

 …..

Rx

 … .

● I2C Timming:

START Address 0 ACK N ACK DATA1 ACK DATAN NAK STOP

N payload bytes 1 byte 1 byte1 bit

START Address 1 ACK N ACK DATA1 ACK DATAN NAK STOP

N payload bytes 1 byte 1 byte1 bit

Software programming Guide V1.2 www.egalax.com.tw 7

1.3 Packet Parser Sample Code

#define MAX_BUFFER 1024

#define MOUSE_PACKET_LEN 5

#define MAX_CMD_LEN 16

#define POLLING_BUFFER_SIZE 3

unsigned __stdcall PortThreadRoutine(LPVOID pContext)

{

 CPort *pPort = (CPort *) pContext;

 CHAR pBuffer[MAX_BUFFER];

 CHAR pMsgBuffer[MAX_BUFFER];

 DWORD dwRead = 0;

 DWORD dwCnts = 0;

 BOOL bPointPacket = FALSE ;

 BOOL bCmdPacket = FALSE;

 DWORD dwCmdPacketLen;

 UCHAR ucChar;

 INT i;

 while(TRUE)

 {

 if(WAIT_OBJECT_0 == ::WaitForSingleObject(pPort->m_hStopEvent, 0))

 {

 return 100;

 }

 // read packet from COM port or USB port

 if (pPort->Read(pBuffer, POLLING_BUFFER_SIZE, &dwRead, pPort->m_hReadEvent))

 { // parse the packet

 for(i = 0; i< (INT)dwRead; i++)

 {

Software programming Guide V1.2 www.egalax.com.tw 8

 ucChar = pBuffer[i] ;

 if((pBuffer[i] & 0xF0) == _SYNCBIT) && !bCmdPacket)

 {

 dwCnts = 0;

 pMsgBuffer[dwCnts] = pBuffer[i];

 bPointPacket = TRUE;

 dwCnts++;

 continue;

 }

 else if(_SOP == ucChar && !bPointPacket && !bCmdPacket)

 {

 bCmdPacket = TRUE;

 dwCmdPacketLen = (DWORD)-1;

 bPointPacket = FALSE;

 continue;

 }

 else if(bCmdPacket)

 {

 if((DWORD)-1 == dwCmdPacketLen)

 {

 dwCmdPacketLen = (DWORD)pBuffer[i];

 dwCnts = 0;

 if(dwCmdPacketLen > MAX_CMD_LEN)

 dwCmdPacketLen = MAX_CMD_LEN;

 continue;

 }

 pMsgBuffer[dwCnts] = pBuffer[i];

 dwCnts++;

 if(dwCmdPacketLen == dwCnts)

 {

 dwCmdPacketLen = 0;

 pMsgBuffer[dwCnts] = 0;

 dwCnts++;

 // Here, a completely Cmd packet received !!!

 // Do what you want to do!

 // For instance,

 // pPort->DisPatchMessage(pMsgBuffer, dwCnts);

 dwCnts = 0;

 bCmdPacket = FALSE;

Software programming Guide V1.2 www.egalax.com.tw 9

 continue;

 }

 continue;

 }

 if(bPointPacket)

 {

 pMsgBuffer[dwCnts] = pBuffer[i];

 dwCnts++;

 if(MOUSE_PACKET_LEN == dwCnts)

 {

 // Here, a completely point packet received !!!

 // Do what you want to do!

 // For instance,

 //pPort->DisPatchMessage(pMsgBuffer, dwCnts);

 dwCnts = 0;

 bPointPacket = FALSE;

 }

 continue;

 }

 }

 }

 }

}

Software programming Guide V1.2 www.egalax.com.tw 10

1.4 2 Points Calibration for Position Decoding

1. LL and UR are the calibration target points of touch panel, the points are setup at

LL = (1/8 screen X, 1/8 screen Y) = (256 , 256) ADC ;

UR = (7/8 screen X, 7/8 screen Y) = (1791 , 1791) ADC

2. During calibration, press on these two target points, the raw data are obtained as

LL ‘and UR’:

LL’ = (LLX, LLY) ;

UR’ = (URX, URY)

3. After the calibration, whenever the panel was touched, firmware report the raw

data X and Y. Then, the calibrated position X’ and Y’ are calculated with the

formulation as follows:

X’ = X 1536 + 256

Y’ = X 1536 + 256

(0 , 0) ADC (2047 , 0) ADC

(2047 , 2047) ADC (0 , 2047) ADC

UR =(1791 , 1791) ADC

LL = (256 , 256) ADC

X – LLX

URX – LLX

Y – LLY

URY – LLY

